
Abstract- The computational cost of solving electroencephal o-
graphic (EEG) or magnetoencephalographic (MEG) inverse 
problem is extremely high due to the inversion of a matrix con-
figured with a priori information. The matrix size is propor-
tional to the number of points in source grid. We present a 
multi -scale grid approach to solve the inverse problem using 
FOCUSS algorithm which is one of the current density recon-
struction (CDR) methods and tested the algorithm with simu-
lated EEG data. The multi-scale grid approach dramatically 
reduces grid points without loss of the resolution. 
Keywords – inverse problem, electroencephalograhpy, current 
dipole, grid  

 
I. INTRODUCTION 

 
The electroencephalographic (EEG) or magnetoencepha-

lographic (MEG) inverse problem is to estimate the current 
dipole sources underlying measured electric potentials or 
magnetic fields of the brain outside the head. Among the dif-
ferent approaches to the bioelectromagnetic inverse problem, 
the current density reconstruction (CDR) methods are widely 
used. The CDR methods comp ared to the equivalent current 
dipole (ECD) methods are computationally intensive due to 
the large number of source grid points distributed in the 
whole head. It is inevitable to approach the inverse problem 
by making uniformly distributed source grid points that cover 
the whole brain area, though the activations are really local-
ized to several areas. That is a main cause of considering 
unnecessary grid points as potential source points and making 
a wasteful computational effort. In order to reduce the 
computational intensity caused by the multiplicity of 
potential source locations, this paper presents a method that 
constructs a multi-scale grid in the CDR methods. The 
proposed multi-scale grid approach is tested with simulated 
EEG data sets.  
 

II. METHODOLOGY 
 
A. Background 
 

The EEG inverse problem can be expressed in terms of a 
linear model. The linear forward model relating the N  pri-
mary current sources j and the M EEG measurements m can 
be expressed as  

 
m = Gj        (1) 

 
where the vector j (3N x 1) is composed of the x, y, and z 
components of the current source in the N grid points and the 
lead field matrix G (M x 3N) may be viewed as the sensitivity 
of the sensors to the sources and depends on the geometry 

and conductivities of the head model described as a volume 
conductor model. 

In practice, of course, the head is not spherical and the 
electrodes on the head surface do not make point measure-
ments of the electric potential. However, we use a spherical 
head geometry and assume point measurements in the ex-
perimental results presented below. 
 
B. FOCUSS algorithm 

 
The FOCUSS algorithm [1] solves this problem by using 

a recursive procedure of weighted minimum-norm estima-
tions of the sources. The source estimation at the i-th iteration 
is written 

 
ji = Wai Wpi (G Wai Wpi)

+m       (2) 
 

where (A)+ denotes the Moore-Penrose pseudo-inverse of 
matrix A . Wpi is a diagonal matrix defined by using the previ-
ous solution. The k th diagonal element of Wpi, Wpi(k,k ) is 
defined as follows: 
 

Wpi(k,k)= Wpi-1(k,k) ji-1(k)      (3) 
 

Wai provides a way to incorporate a priori physiological 
and anatomical information. 

 
C. FOCUSS with multi-scale grid approach 

 
Incorporating a smoothness constraint lead to long com-

putation times due to the inversion of Wai
T Wai. The following 

multi-spacing grid approach reduces grid points and comp u-
tation times. 

 
Step1: Make an initial coarse mesh grid that covers the 
whole brain region. 
Step2: Estimate sources with the constructed source grid. 
Step3: Check whether each source is activated.  
 

p = 1 - P(s > sk)     (4) 
 
where sk  is the intensity of the kth source and P(s)  denotes 
a probability of s which is assumed with Gaussian distri-
bution. 
  If p > pth, the source location is considered as an acti-
vated region. In the significantly activated region that is 
occupied by the activated point source, a new fine grid is 
substituted for the coarse one. 
Step4: Go to step 2 until it reaches minimum grid spacing. 
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III. SIMULATIONS 
 

To test FOCUSS with multi-scaled grid approach we 
simulated EEG data set. These simulated data were generated 
from two active regions with a three-shell spherical head 
model, which is centered at point (0,0,0) and the radius of 1. 
Each region shown in Fig.1 was centered at (0.3, 0.3, 0.3) and 
(-0.3, -0.3, 0.2) and consisted of nine current dipoles in a 0.02 
x 0.02 x 0.02 cube. Background dipole activity with zero-
mean white Gaussian distribution was assumed. All the back-
ground dipoles were randomly located and oriented in a 1 x  1 
x 0.5 volume. We tested the algorithm without background 
activities and with background activities of SNR=10.  

62 Electrodes were uniformly placed on the upper hemi-
sphere of the head. 

Initial mesh grid was set with 0.125 and in the next step 
the mesh-spacing was 0.0313. The grid points in the second 
step were marked with green circles in Fig.1. The threshold 
(pth) used to determine weather an estimated dipole is in sig-
nificantly active state was set to 0.7.  

 
 

IV. RESULTS 
 

The results of simulations are shown in Fig.1. In the second 
iteration, the resolution of grid was 0.0313 and the total num-
ber of grid points was 571 without noise. 600~800 grid points 
were constructed with simulated EEG data with noise 
(SNR=10). A conventional grid with the same resolution 
would contain 16384 points. The active sources were closely 
located to the original active regions as shown in Fig.1. 

 
 

V. CONCLUSION 
 

FOCUSS algorithm with multi-scale grid approach was 
tested and reduced the number of grid points without change 
of grid resolution. The multi-scale grid approach is expected 
to be incorporated with other CDR methods. 
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Fig.1 Assumed sources (light green filled circles), constructed multi-scale 
grid points (dark green vacant circles), and the reconstructed sources (red 
filled circles). (a) Results with EEG without background activations (b) with 
background activations, SNR=10. 
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